The page you requested could not be found. For your convenience, we started a search for you with the terms "products mini chambre dinhalation anti statiqu".
Depending on the pMDI/spacer system chosen the delivery of medication can vary significantly and as a result will have implications on the potential carbon footprint.
In this case, the use of the AeroChamber Plus* Flow-Vu* VHC could potentially reduce the carbon footprint by three fold compared to the alternative spacers.
By maximizing the amount of each puff reaching the lungs the patient is likely to be able to get relief sooner and reduce the amount of puffs needed.
Depending on the pMDI/spacer system chosen the delivery of medication can vary significantly and as a result will have implications on the potential carbon footprint.
In this case, the use of the AeroChamber Plus* Flow-Vu* VHC could potentially reduce the carbon footprint by three fold compared to the alternative spacers.
By maximizing the amount of each puff reaching the lungs the patient is likely to be able to get relief sooner and reduce the amount of puffs needed.
As current MDIs contain hydrofluorocarbon propellants, it would be beneficial to find ways to reduce carbon emissions without compromising patient safety.
This lab study investigated a way to optimize the modelled lung dose per actuation while at the same time minimizing the carbon emissions from the MDI