Importance of the Tongue as an Impactor for Orally Inhaled Aerosols from a Pressurised Metered Dose inhaler (pMDI) With and Without a Valved Holding Chamber (VHC)

Nagel, M¹, Doyle, C¹, Suggett, J¹, & Mitchell, J²

1 Trudell Medical International, London, ON, Canada 2 Joylon Mitchell Inhaler Consulting Services Inc., London, ON, Canada

BACKGROUND

- Positioning of the tongue during inhaler medication delivery is something that is not thought about by either users or caregivers.
- The tongue acts as an impaction surface for the high initial velocity of the expanding plume emitted from a pMDI.
- An alternative is to use the inhaler with a VHC that by virtue of its internal volume, allows the plume to expand and slow its forward velocity before being inhaled.

MATERIALS & METHODS

- Measurements undertaken (n = 5 replicates at each condition) using pMDIs delivering a nominal dose/actuation of 90 µg salbutamol ex actuator mouthpiece and assayed drug mass by a validated HPLC method.
- We developed four sintered nylon adult oropharyngeal casts (Figure 1) based on the ADAM-III internal geometry by a 3-D printing process (Materialise, Leuven, Belgium).

OBJECTIVE

• To compare the amount of oropharyngeal impaction by using a series of model adult oropharyngeal cavities (OCs) in which only the tongue size was progressively reduced.

TONGUE VOLUMES IN THE MODELS

- Model 1: volume of tongue not reduced (reference)
- Model 2: tongue volume 60% of reference
- Model 3: tongue volume 30% of reference
- Model 4: tongue volume 0% of reference

- We connected the exit from the model on test directly to an abbreviated Andersen cascade impactor to measure total mass ex inhaler with or without VHC and FPM< 4.7μ m.
- In the first series of measurements, the primed and shaken pMDI was actuated 5 times into the lips of the OC without a VHC.
- In the second series, we repeated the measurements with the original pMDI, this time adding an antistatic **AeroChamber Plus*** VHC/ mouthpiece.
- 2 s delay interval between pMDI actuation and starting to sample to simulate use by a poorly coordinated patient.

Figure 1: Combined Sagittal **View Superimposing the Four** Model Adult OCs Having **Tongue Volumes of 100%** (Model 1), 60% (Model 2), 30% (Model 3), and 0% (Model 4)

RESULTS

• Fine particle mass fraction <4.7 μ m aerodynamic diameter (FPF_{<4.7µm}) and fine particle mass/actuation (FPM_{<4.7 μ m}) is illustrated Table 1 for the pMDI alone and in Table 2 for the pMDI with VHC with 2 s delay following actuation before initiating sampling.

Model	1	2	3	4
% tongue volume	100	60	30	0
FPF _{<4.7µm} (%)	26.7 ± 3.6	28.2 ± 3.4	22.6 ± 3.0	38.5 ± 6.5
FPM<4.7µm (µg/actuation)	12.9 ± 2.1	16.3 ± 1.6	17.2 ± 2.4	26.5 ± 3.8

Table 1: pMDI-Delivered Salbutamol without VHC (mean ± S.D.) to Four Adult OCs with Differing Tongue Volumes

Model	1	2	3	4
% tongue volume	100	60	30	0
FPF _{<4.7μm} (%)	89.1 ± 3.5	89.0 ± 3.0	93.4 ± 1.9	90.5 ± 2.8
FPM<4.7µm (µg/actuation)	24.5 ± 2.0	30.7 ± 2.4	29.6 ± 5.9	29.5 ± 3.7

 Table 2: pMDI- Delivered Salbutamol with VHC to Four Adult OCs with Differing Tongue Volumes

- $FPF_{<4.7\mu m}$ for the pMDI alone increased significantly with larger OC volumes (1-way ANOVA, p < 0.0001) from 16.7 \pm 3.6% with the full tongue volume present (model 1) to $38.5 \pm 6.5\%$ when the tongue was completely removed (Model 4).
- This change was associated with an increase in FPM_{<4.7µm} from 12.9 \pm 2.1 µg/ actuation to 26.5 \pm 3.8 µg/actuation (p < 0.0001).
- In contrast, when the VHC was present, with a 2 s delay between actuation and inhalation, FPF_{<4.7µm} remained relatively consistent across the different tongue volume conditions and $FPM_{<4.7\mu m}$ changed much less than with the MDI alone.

pMDI Alone and pMDI +VHC with a 2 s Delay Following Actuation

DISCUSSION

• The findings of Xi and Yang (J Drug Delivery Sci Technol. 2019; 49: 674-682.) who found a 6%–25% reduction in medication delivery efficiency caused by the tongue are comparable with the 26% increase in $FPM_{<4.7\mu m}$ observed going from Model 1 to Model 2, in which the volume occupied by the tongue was decreased from 100% to 60% (Table 1).

- This change was also accompanied by a significant increase in $FPF_{<4.7\mu m}$ (unpaired t-test, p < 0.001), indicating that the location of the tongue when fully present, could also capture some fine particles $<4.7 \mu m$ aerodynamic diameter, as well as coarser particles.
- Importantly, the further reductions in tongue volume by 70% (Model 3) and 100% (model 4) are not meant to represent clinical situations, but to serve as a means of demonstrating the progressive changes in these two measures of interest, moving to an extreme situation with no tongue present.

CONCLUSION

- This study confirms the importance of the tongue in controlling the amount of medication as fine particles capable of reaching the airways of the lungs.
- If a VHC is absent, it confirmed that fine particle mass will be reduced compared with the case when a VHC is interposed between inhaler and the mouth of the patient.
- If a VHC is present, it showed consistent fine particle delivery, independent of tongue position, without the need to coordinate actuation with inhalation.
- When assessing inhaler technique a VHC should be recommended, and if not, tongue position should be discussed with the patient.

Drug Delivery to the Lungs December 7-9, 2023

pitfalls of mobile devices in learning: A different view and implications for pedagogical design. Journal of Educational Computing Research, 46(2), 119-134. 2 Guertler D, Vandelanotte C, Kirwan M, Duncan MJ. Engagement applications for pedagogical design. Journal of Educational Computing Research, 46(2), 119-134. 2 Guertler D, Vandelanotte C, Kirwan M, Duncan MJ. Engagement applications for pedagogical design. Journal of Educational Computing Research, 46(2), 119-134. 2 Guertler D, Vandelanotte C, Kirwan M, Duncan MJ. Engagement applications for pedagogical design. Journal of Educational Computing Research, 46(2), 119-134. 2 Guertler D, Vandelanotte C, Kirwan M, Duncan MJ. Engagement applications for pedagogical design. Comput Inform Nurs. 2019 Jul;37(7):340-8 4 Fu H, McMahon SK, Gross CR, Adam TJ, Wyman JF. Usability and clinical efficacy of diabetes mobile applications for adults with type 2 diabetes: a systematic review. Diabetes Res Clin Pract. 2017 Sep;131:70-81 5 Kosa SD, Monize J, D'Souza M, Joshi A, Philip K, Reza S, Samra S, Serrago B, Thabane L, Gafni A, Lok CE. Nutritional mobile applications for CKD patients: systematic review. Kidney rg/knowledge-center/. Accessed June 2023. 7 Zhou L, The mHealth App Usability Questionnaire (MAUQ): Development and Validation Study JMIR Mhealth Uhealth 2019;7(4):e11500 8 Djamasbi, MUX: develop MD-327A-1023 * trademarks and registered trademarks of Trudell Medical International. + trademarks of their respective companies. Copyright @ Trudell Medical International 202