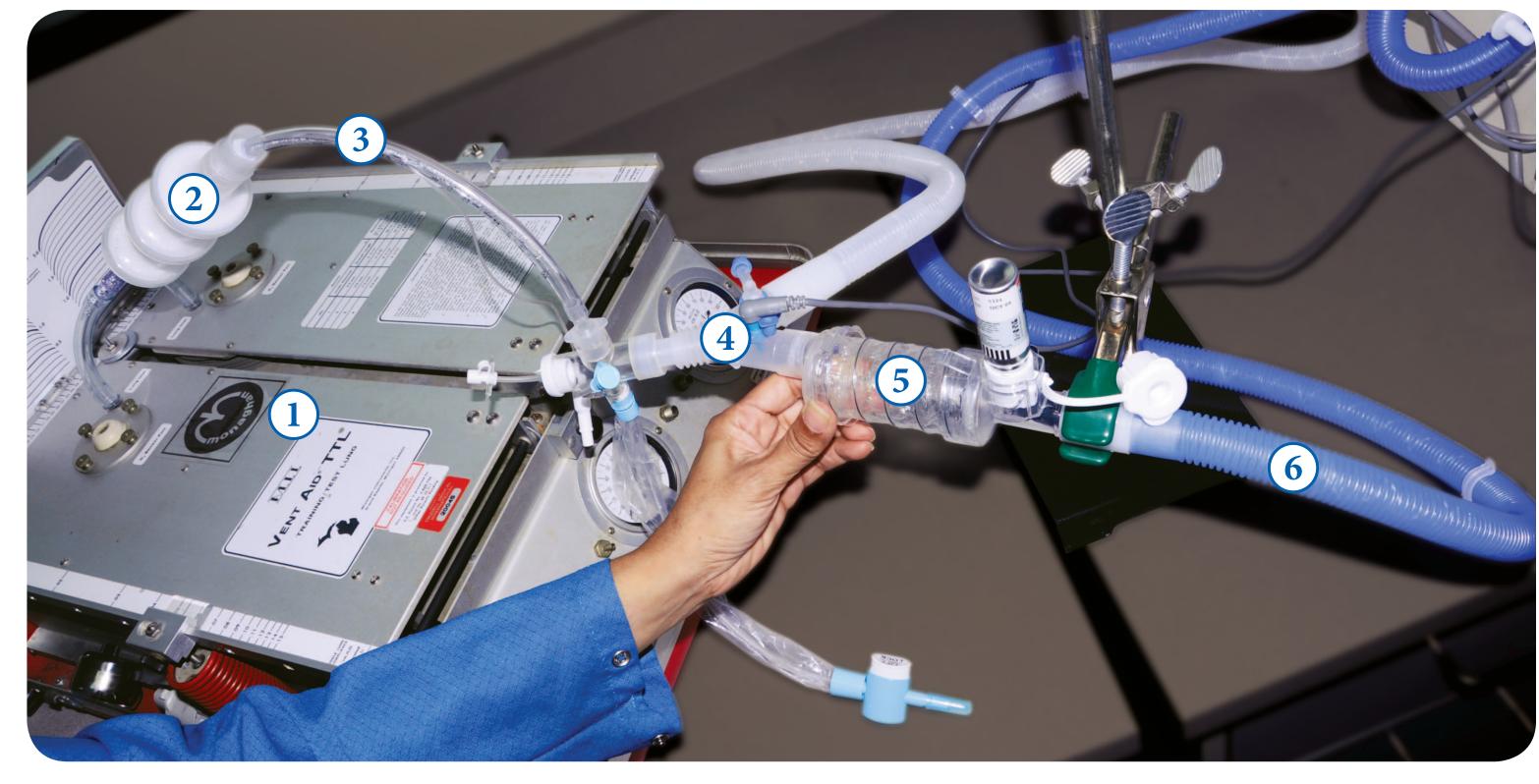
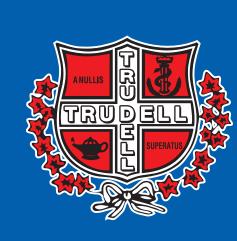
IN VITRO PERFORMANCE OF A NEW COLLAPSIBLE HOLDING CHAMBER FOR THE DELIVERY OF **AEROSOLIZED MEDICATION BY PRESSURIZED METERED-DOSE INHALER**


Mark Nagel, Valentina Avvakoumova, Cathy Doyle, Rubina Ali and Jolyon P. Mitchell Trudell Medical International, London, Ontario

BACKGROUND


- It is desirable not to break the ventilation circuit during the delivery of aerosols to patients receiving inhalation therapy whilst on mechanical ventilation
- The *AeroVent** Collapsible Holding Chamber (CHC) (Monaghan Medical Corp., Plattsburgh, NY) was developed several years ago to combine the benefit of a holding chamber when expanded with the convenience of being able to collapse the device when not in use, thereby minimizing water trapping
- The present *in vitro* evaluation of a new version (AeroVent Plus*), in which the pMDI canister receptacle has been offset from the CHC axis to reduce internal impaction, and which can also accept GSK pMDI canisters having a dose counter, provides comparative data with other in-line adapters
- The purpose of the present study was to assess how the new device performed in a laboratory assessment of its function in an adult ventilator circuit

1 – Test lung

rudell Medical International*

MATERIALS AND METHODS

• The *AeroVent Plus** CHCs (n=5) were each inserted in the inspiratory limb of an adult mechanical ventilation circuit

• Humidification was provided in circuit via a Model MR850JHU (Fischer & Paykel, Auckland, NZ)

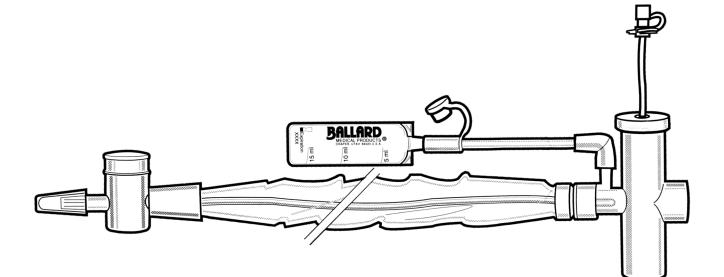
• The distal end of the CHC was coupled to the wyeconnector to which a 7.0 mm diameter endotracheal tube (ETT) was attached

• An aerosol collection filter was located at the distal end of the ETT, and the far-side of the filter was coupled to an adult test lung (Michigan Instruments, Grand Rapids, MI) simulating the patient

- for aerosol recovery
- **3** ETT 2 – High efficiency filter 4 – Wye connector
- 5 CHC on test 6 – Inspiratory limb of adult breathing circuit

- The circuit was humidified near to body conditions $(T = 37^{\circ}C, 100\% RH)$
- An adult patient tidal-breathing simulation was created
- Servo ventilator (Siemens, Sweden, model 900C)
- Tidal volume = 600 mL
- Duty cycle = 33%
- Rate = 10 breathing cycles/min
- 5-actuations of Ventolin⁺ (GSK Canada, 100 μg salbutamol ex-valve) were delivered, each time canister between actuations
- Salbutamol recovered quantitatively and assayed Emitted Mass (TEM)
- Similar measurements (n=5/device) were also performed, replacing the CHC with the following

AirLife[†] Dual Spray MiniSpacer Cardinal Health, Dublin, OH

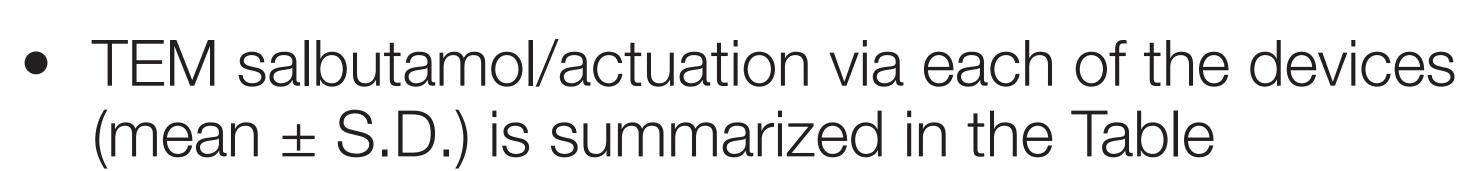


followed by 6-complete breathing cycles, shaking the

by HPLC-UV spectrophotometry to establish Total

OptiVent⁺ Philips Healthcare, Andover, MA

Adult universal in-line pMDI adapter, model RTC 24-V Instrumentation Industries Inc., Bethel Park, PA

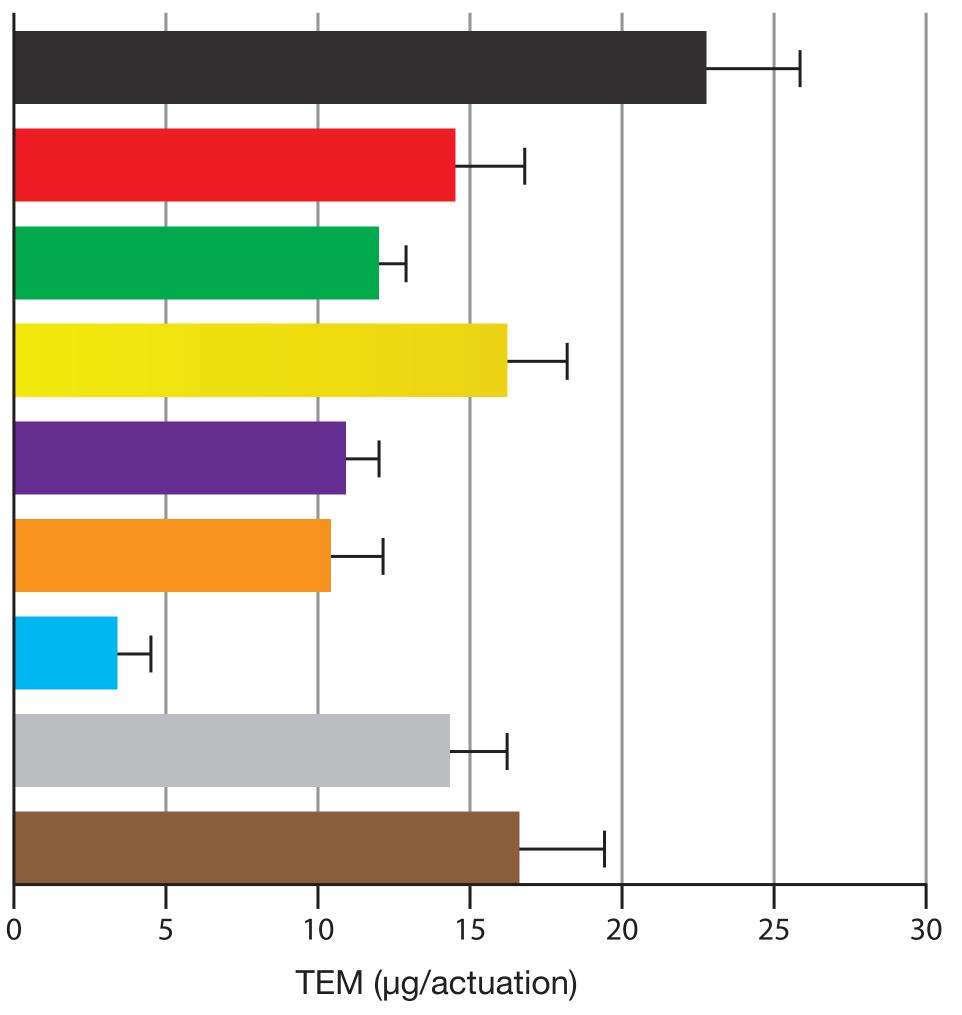


Ballard suction catheter with pMDI port Kimberly-Clark Healthcare, Roswell, GA

Hudson ventilator adapter Hudson RCI, Research Triangle Park, NC

RESULTS

Device	Ventilator Circuit Tubing Outside Diameter (mm)	Mass salbutamol/ actuation (µg)
AeroVent Plus* CHC	22 mm in-line, coupled directly to wye connector	22.7 ± 3.1
AirLife [†] MiniSpacer [†]	22 mm in-line coupled directly to wye connector	14.5 ± 2.3
	15 mm with adapter direct to ETT	12.0 ± 0.9
OptiVent ⁺ VHC	22 mm coupled directly to wye connector	16.2 ± 2.0
RTC 24-V ventilator adapter	22 mm coupled directly to wye connector	10.9 ± 1.1
	15 mm with adapter direct to ETT	10.4 ± 1.7
Ballard suction catheter with pMDI port	Coupled direct to ETT	3.4 ± 1.1
Hudson ventilator adapter	22 mm coupled directly to wye connector	14.3 ± 1.9
Fischer & Paykel (F&P) pMDI adapter	Coupled to wye connector with F&P adapter	16.6 ± 2.8



Fischer & Paykel

Dom P. Coppolo Monaghan Medical Corp., Syracuse, NY

pMDI-DELIVERED SALBUTAMOL FROM VARIOUS **IN-LINE AEROSOL DELIVERY DEVICES FOR THE ADULT PATIENT ON MECHANICAL VENTILATION**

AeroVent Plus* CHC – 22mm in-line coupled directly to wye-connector AirLife[†] MiniSpacer[†] – 22mm in-line coupled directly to wye-connector AirLife[†] MiniSpacer[†] – 15mm with adapter direct to ETT OptiVent[†] VHC – 22mm in-line coupled directly to wye-connector RTC 24-V ventilator adapter – 22mm in-line coupled directly to wye-connector RTC 24-V ventilator adapter – 15mm with adapter direct to ETT Ballard Suction Catheter with pMDI port Hudson Ventilator Adapter Fischer-Paykel pMDI Adapter

CONCLUSION

• The *AeroVent Plus** CHC delivered significantly more medication to the distal end of the ETT compared with the other adapters (un-paired t-test, p < 0.001)

> **ATS International Conference** May 18 – 23, 2012 San Francisco, California