Assessment of Potential Mouth/Throat Deposition and Lung Delivery of Suspension- and Solution-Formulated Inhaled Corticosteroid Formulations Delivered by **Pressurized Metered Dose Inhaler without and with Valved** Holding Chamber Using an Anatomic Adult Upper Airway

Jason A. Suggett¹, Mark W. Nagel¹, Jolyon P. Mitchell²

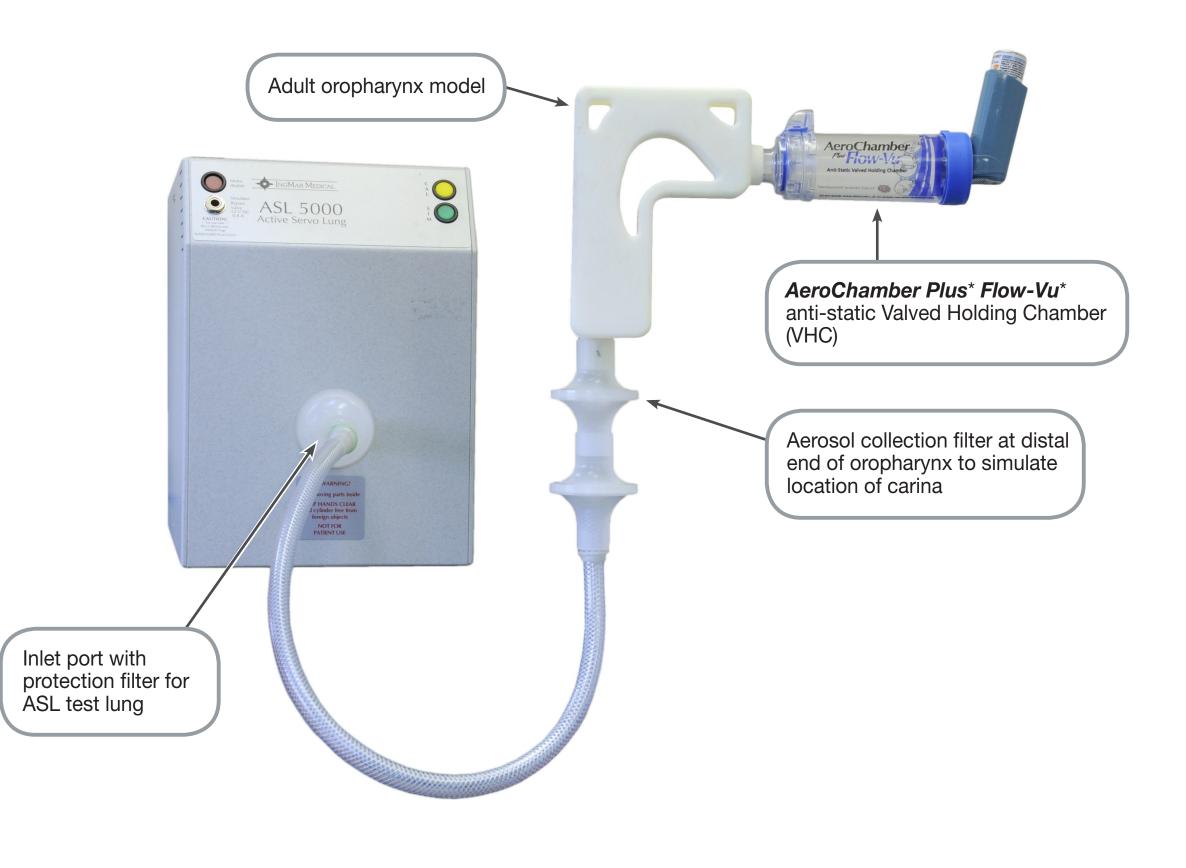
¹ Trudell Medical International, London, Canada. ² Jolyon Mitchell Inhaler Consulting Services Inc., London, Canada.

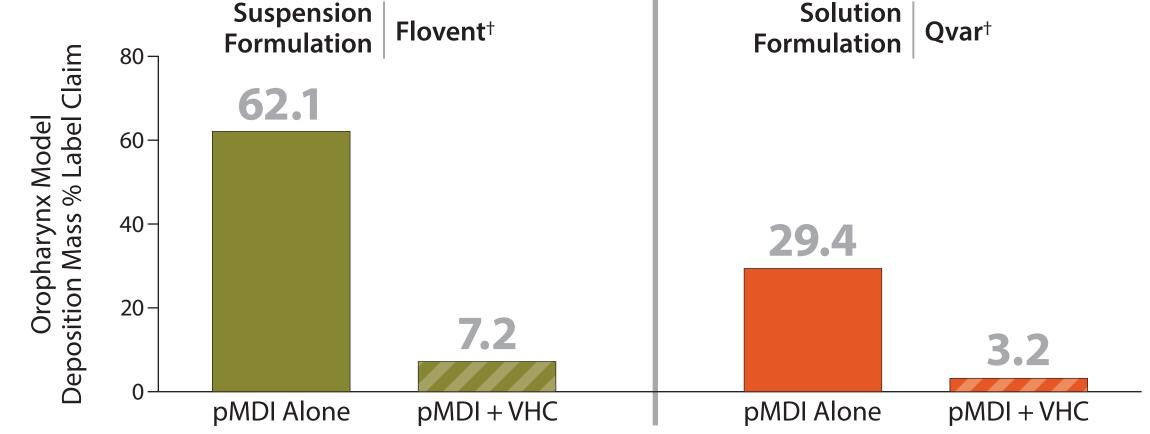
INTRODUCTION / STUDY PURPOSE

• The present laboratory study explored how insertion of a Valved Holding Chamber (VHC) in the pathway between pMDI and the mouth might affect the transfer of particles from inhaler mouthpiece to the airways of the lungs

RESULTS

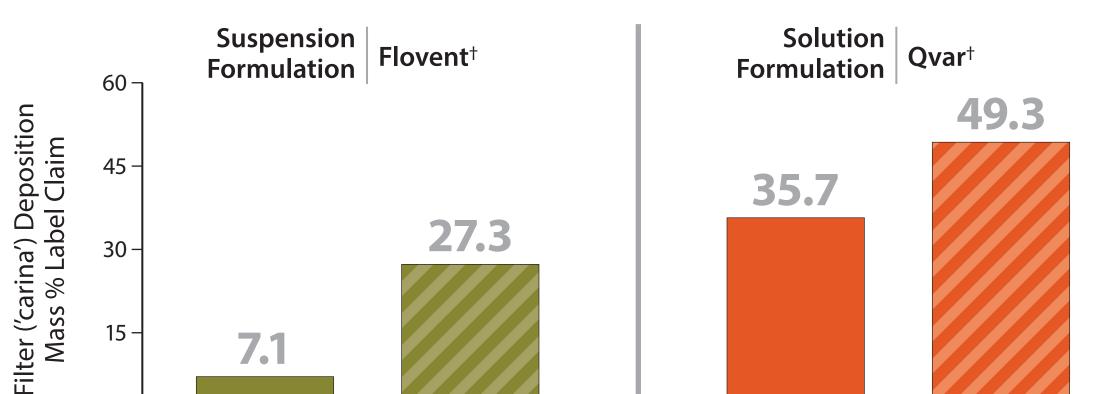
Figure 2: Particle Deposition in the Oropharynx of the Adult ADAM Airway


>> Representative of Oropharyngeal Deposition


Suspension		
------------	--	--

• An anatomically correct adult oropharyngeal airway was used in conjunction with simulated patient inhalation, and both suspension and solution corticosteroid pMDIs were assessed

MATERIALS AND METHODS


Figure 1: Experimental Arrangement Showing Adult Oropharyngeal Inlet; The Same Configuration was Utilized for Evaluation of pMDI Alone or with VHC Present

- When the VHC was absent, the FP (suspension) formulation was deposited in the oropharyngeal passageway at approximately double the extent to that observed with the BDP (solution) formulation (62% v 29%)
- Significant oropharyngeal airway deposition still occurred, even with the ultrafine HFA solution product, which was greatly reduced when the VHC was present (29% v 3%, p < 0.001).

Figure 3: Particle Deposition on Filter Located at the Distal End of the ADAM Adult Airway >> Representative of Delivery to the Lungs

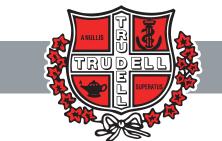
- The location of filter represents the approximate location of the carina¹, so that the mass of active pharmaceutical ingredient (API) collected thereon was deemed to be indicative of potential lung deposition
- The following standardized² adult profile based on tidal breathing was used throughout the investigation
 - Tidal volume = 770 mL
 - Inspiratory/expiratory ratio = 1:2
 - Rate per minute = 12
- Antistatic AeroChamber Plus* Flow-Vu* VHCs (Trudell Medical International, London, ON, Canada) were used as a representative VHC
- Three replicate measurements were made at each condition with each of the pMDI products
- Two actuations of the pre-primed pMDI canister were actuated into the entry of the airway, the second timed to take place following 6 breathing cycles after the initial actuation.

Table 1: Study Design and Outputs

pMDI product	API/mass per actuation	Formulation type	VHC present	Outputs Measured
Flovent ⁺ 125	FP/125 µg	HFA Suspension	No	Model airway and filter deposition related to potential oropharyngeal and lung deposition respectively
			Yes	
			No	
Qvar ⁺ 100	BDP/100 µg	HFA Solution	Yes	

• Following each test, an internally validated HPLC-UV spectrophotometric assay was used to determine the mass of the relevant API recovered at each location

- As expected, the finer aerodynamic particle size distribution of the ultrafine Qvar⁺ solution aerosol resulted in greater delivery to the filter ('carina') compared with the coarser Flovent⁺ suspension aerosol (p < 0.001) when the VHC was absent, although the large degree of difference (7% v 36%) is potentially surprising (see Figure 3)
- Filter deposition was increased for both pMDI products when the VHC was present (p < 0.001). The increase was more pronounced with the suspension product; however, an increase was still evident even when used with the solution HFA pMDI
- Given the findings for both oropharyngeal and filter deposition in the present study, the view that a VHC might not add value with the solution type of product for oropharyngeal deposition [5], therefore appears to be an overstatement of reality


CONCLUSIONS

- This laboratory-based pilot study, using a new replicated adult airway, provides new data supporting the fact that finer solution HFA pMDI products are likely to deposit in the oropharynx to a lesser extent and be delivered to the lungs to a greater extent, than suspension HFA pMDIs
- The combination with a VHC, for either type of product, resulted in significantly less drug deposited in the modelled oropharynx and increased potential for lung delivery
- Hence the potential value of a VHC, even within an adult population, is demonstrated.

REFERENCES:

- ¹ Leach CL. Toxicology of propellants. In: TS Purewal and DJ Grant, eds: Metered Dose Inhaler Technology. Interpharm Press, Inc. Buffalo Grove, IL, USA. pp.229–254, 1998.
- ² Leach CL: Enhanced drug delivery through reformulating MDIs with HFA propellants—drug deposition and its effect on preclinical and clinical programs. In: RN Dalby, PR Byron, and SJ Farr, (eds): Respiratory Drug Delivery—V. Interpharm Press Inc., Buffalo Grove, IL; 1996; pp. 133–144.
- ³ Nagel MW, Suggett JA, Coppolo DP, Mitchell JP. Development and evaluation of a family of human face and upper airway models for the laboratory testing of orally inhaled products. AAPS PharmSciTech. 2017 on-line at: https://link.springer.com/article/10.1208%2Fs12249-017-0802-5 visited July 5 2017.

Drug Delivery to the Lungs 28 December 6 – 8, 2017 Edinburgh, Scotland

Trudell Medical International

Excellence By Design

MD-830A-1017 * trade-marks and registered trade-marks of Trudell Medical International. † trade-marks and registered trade-marks of respective companies. Copyright © Trudell Medical International 2017.